
GENERAL SOLUTION OF DIFFUSION PROCESSES 
IN SO‘LID-LIQUID EXTRACTION 

M. D. MIKHAILOV 
Applied Mathematics Centre, P.O. Box 384, Sofia, Bulgaria 

Abstract-An analytical solution is found for the concentration dist~bu~ons in 4 different part&s of 
arbitrary finite geometry and initial conditions to be extracted in batch of finite volume. The variation of 
concentration of the surrounding liquid is coupled with separation ofsubstance from the porous particles at 
the mass balance conditions for the liquid phase. The solution obtained contains in itself as a very special case 
the problem of the periodical, co- and counter-current extraction from one-dimensional particles (plate, 
cylinder and sphere) [l, 2, 8-101T the problem of the temperature distributions in solid particle heated by 
gases at co- and counter-current [3,5] and the problem of heating a body in a bounded volume of a well 

mixing liquid [4,7]. 

NOMENCLATURE 

A,, &, C,, constant boundary coeficients ; 
~~~~~,~~~x~~~~~~ initia1 distribution functions; 

%(W, %&xx &WX k&X p?lW, z), P,(x TI, 
Q(z), prescribed functions ; 
4 1,2,3, . . . ; 

z, 
AZ...,q; 
point in V,; 

N, point on S,; 

n, outward normal of&,,; 
S rn* boundary of V, ; 

P, Laplace transform parameter ; 

cpo3 00, initial liquid potential; 
v(z), ef(Fo), unsteady liquid potential; 
J/&&f), Ifi&), eigenfunctians; 

&* eigenvafues ; 
I- In’ formfactor of the particles equal to 

0,l and 2 for plate, cylinder and sphere 
respectively ; 

R iT> characteristic length of the particles (half 

the thickness of the plate or the radius 
for the cylinder and the sphere); 

R, average size of the particles ; 
D,, r>, diffusion and average diffusion coefficient 

of particles ; 

r, = r/R,, eon-dimensional co-ordinate; 

Fo, = Dz,@, Fourier number ; 

2 
DR; 

@rn* 
=a,,,R2’ 

non-dimensional numbers; 

&,, = p,,,R,,,/~,,~, Biot number where &,, is the 
coefficient of mass transfer between the 
fluid and the particles ; 

r,,t + 1 v 
= - -, non-dimensional numbers, 

at, y, 
where v,. and V are the volumes of the 
extracting liquid and the liquid, Bfing the 
pores of all the partides ; 

S,&, Fo), nob-dimensional concentration 
of particles. 

THE PROCESSES of extracting substance from solid porous media are widely disseminated. As an example one can 
consider the extraction ofsugar from sugar white beet turnings, the extraction ofplant oil from seeds and so on. In 
the production of mineral salts in chemical industry the first stage of the process is the lixivation, that is the 
extraction of the soluble components from the minerai raw materials by means of water or water salts. Analogous 
processes take place in extractive metallurgy, where for the dissolution weak sotutions of acids or salts are used 

[I, 21. 
All the above mentioned processes have a common mechanism of mass transfer from the inside of the porous 

body and are described by the well-known diffusion equation [I, 23. The general solution obtained in [li] 
enables one to study the kinetics of the process if one assumes that the concentration of the extracting liquid is a 
preliminary given function of time. 

But the preliminary assumption for the law of the variation of the concentration of the extracting liquid is not 
correct because the ac~umuiation of substance in the extracting liquid is connected with the separation of 
substance from the porous particles. This is why one is to couple the variation of concentration of the 
surrounding liquid with the one of the porous particles through the differential equations of the mass balance. 
Such a method is used in [ 1 -lo] and others. 

Detailed solutions for one-dimensional bodies (plate, cylinder and sphere) are given in [4,6] where it is pointed 
out that the problem of determining the kinetics of the periodical, co- and counter-current extraction ofsubstance 
from solid porous particles [I, 2] and the problem of dete~i~at~on of the temperature field of a solid particle 
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heated by gases at co- and mounter-current [3, S] are fully identical to the problem of heating a body in a bounded 
volume of a we&mixing liquid. 

The most general solution of the problem is given in [7] where identical particles of arbitrary finite form are 
considered, subject to arbitrary initial distributions and arbitrary source functions. From this solution one can 
easily obtain as special cases the solutions given in [l-lo]. 

But in real processes the particles have different forms and sizes. In [ 1,2] it is shown that at the beginning of the 
process the concentrations in the finer fractions considerably decrease, becoming lower than the equilibrium 
concentration of the mixture. As time goes on and depending on the increase of the concentration of the 
extracting liquid the fine fractions stop to give substance away and later begin to absorb it from the surrounding 
liquid up to the time when equilibrium concentration is reached. The larger particles behave in quite a different 
manner--in them concentration continuously diminishes down to the equilibrium one [l, 21. 

It is the purpose of the present paper to render a general analytical solution for the determination of the 
concentration field of q different particles of arbitrary finite form, which are being placed in a bounded volume of 
extracting liquid. From a mathematical point of view the results obtained represent a new step in the 
development of the theory of finite integral transforms, given in [ 11- 131. 

STATEMENT AND SOLUTION OF THE PROBLEM 

The problem may be expressed in general form by the following partial differential equations 

~‘,.AM) 
G,,(M, 7) 

ST 
=div[k,(M)grad T',',(M,T)]+P,(M,T). 

m= 1,2 ,..., q,M~k,, T>O 
(1) 

with the boundary and initial conditions 

A a~~~,r) 
m ----+B,T,(N,r)=<.i(r), al2 m=l,2 ,.... y,NizS,. B,,,#O (21 

dvb) 
-Jy+ fq k,tbV 

in=1 . &v 

FdS,,, = Q(T) (3) 

T,(M, 0) = .f,Pf), c;? (0) = tp*. (4) 

The mass balance conditions (3) by means of liquid phase potential (i)(r) couples the unknown unsteady 
distributions T,(M, t). 

If (p (t) is assumed to be a prescribed function of the time variable r the desired solution can be obtained as a 
special case of the problem treated in [l I]. After substituting the results into equation (3) one gets an integral 
equation for the determination of (p(r), which may be solved numerically. This method Leads to computational 
difliculties and hence it will be simultaneously examined with equations (l)-(4). 

For the solution of the problem it is convenient to start applying the well known Laplace Transform with 
parameter p on equations (1 j(4). 

pw,,(M)T,,W,p) = w,(M)~,(M)+divEk,(M)grad T,(M,pll+ f’,,,@f,~) (5) 

* c?T,,(N, P) 
VI 

211 
+ 4,,LW, P) = t (P) 

PP~P)-+-~~~ Cm 1 . s,,, 
k,(N)aT”~~‘p)dS, = cpo+Q(~). (7) 

After integrating in V, equation (5) and substituting the result in equation (7) one finds the formula for (. (p). 
Then equation (6) may be written as follows 

=; qlo+Q(p)+ 2 c, i ’ 
VI=* il 

~~,@fM,,(M)dK, + 
. v,,, I P,,,@f,p)dKn . (81 

. v.,, II 
TO solve equations (5) at conditions (8) it is supposed that the generalized q-region Sturn-Liuville problem 

div[k,(M)gradIl/,,JM)] +pfwm(M)$,,JM) = 0, m = 1.2.. .., q; i = 1.2. . (9) 

is granted for known. 
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Consider the expansions of prescribed functions F,(M) into a series 

Fm(M) = 2 Di$mi(“). (11) 

i=l 

Equations (9)-(10) lead to an eigenvalue problem having a common set of eigenvalues but different 
eigenfunctions. The problem does not belong to the conventional Sturm-Liouville family, and therefore, for the 
determination of the coefficients Di it is appropriate to derive an integral condition to serve as an orthogonality 
relation. 

Multiplying equation (9) by I/I,,,, j(M) and the same equations for the case i = j by +,,,&kf), subtracting and 
integrating in vfl the resulting expressions, one gets [l I] 

From the boundary conditions (10) II/,(N) is determined. Substituting this result in equation (12) and using the 
formulae obtained after integrating equation (9) in Ph, the desired orthogonality relation is obtained as follows 

Multiplying equation (11) by 

and adding from m = 1 to q one finds the expression for Dj. Then (11) has the form 

For the case ~*(~~ = l/B,,, from (14) one gets 

To solve the problem we define the new finite integral transform 

Z(P) = 2 Cm& 1’ wm(M)$mi(M)‘L(M> P)dV, 
III=1 . v,,. 

+ i cm! wm(M)4i/mi(M)d~m~ i Cm w,(M)T,(M,p)dQ (17) 
m-1 . Y,,. m=1 I . P’,t. 

The inversion formuIae are determined by comparing equations (14) and (17) and can be written as 

(18) 

Now, attention may be directed to the solving (5) at condition (8). After multiplying equations (5) and (9) by 
w,(M)$,,,,(M) and T,(M, p) respectively, adding and integrating in h, the results obtained, one gets 
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Substituting this result in (17) we obtain 
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g&(,)C?!d!Y! 
?I7 

d&n 
RnTJN, P) 

C,,(N. P) 
(37 

+ i: clll 
ffl=, 

1’ ~+~m(M)$mi(M)dC,.mf_, Cm 1’ rv,,,(M)L(M,p)d~,. (20) 
. 1’,>, . I’,,, 

From the boundary conditions (8) and (10) B,,,I//,~(N) and B, T,(N, p) are determined. Substituting this result 

in (20) and using formulae obtained after integrating (5) and (9) in C,, one gets 

Substituting this solution in the inversion formulae (18), after taking into account (16) and using the inverse 

Laplace transform the desired solutions are obtained as follows 

It is important to point out that if parts of the surfaces So, of the particles are insulated, that is if 8Tm(No, r)i& 

= 0. N,ES~,,,. than the solution (22) is still valid, but of course one has to take into account the condition 

c’$,j(No)/En = 0 when determining the eigenvalues and eigenfunctions from equations (9)-(10). 

ONE-DIMENSIONAL SOLUTION 

As an application of the general theory consider the one-dimensional case, described by the differential 

equations system 

at the following boundary 

C,,(.~o, r) = o /, ~T,(.T,,T) 

?r ,m (7.x 
+ &,,T,(Xr, 5) = 1 ,(T) (24) 

d,o (T) 
-k+ i, C,k,(.u,) 

ST,(x-,, T) 
= Q(T) 

I?#=1 3.u 
(25) 

and initial conditions 

L&O) = .f,,,bL P(0) = < 0. (26) 
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Equations (9) and (10) giving the eigenvalues and eigenfunctions take the form 

1413 

dtiimi@o) o 

dx 

u’,(x)$,,(x)dx = 0. 

The solutions (22) for the one-dimensional case will be 

B,+B, i 2 1” 
-1 

w,(x) d.u 
m=l m I xi, ,i 1 

c,“~ + Q(r*) dr* 
0 

-i- 2 G 
* x, 

! I 
w,,,(.u)f,(x) + 

m=l ,xir 

- (p. + 
I J 

*. exp(~~~*)Q(~*)dT* 
-XI 

w~(x)~~j(x)dx 
0 .rir 

where 

wmfX)$nri(~) Bm$mi(x)+ i Cm 
m=l 

(27) 

(28) 

(29) 

(30) 

(31) 

At the end let us consider an extraction of a mixture of particles, which have the form of a plate (I,,, = 0), 
cylinder (I,,, = 1) and sphere (I, = 2). The extraction is defined by the following mathematical model: 

1?2= 1,2,..., 4, 0<5<1, Fe>0 (321 

%Ao, Fo) = o 1 a&(1, Fo) 

at ’ Bi, a< 
+ &,,(I, Fo) = u9JFo) 

ae,,,tl, ~0) = o 
s< 

(33) 

(34) 

e,c 0) = fx), es(o) = 0,. (35) 

In equation (32) the factor of the form Im has a subscript m, which allows for every fraction of particles the 
corresponding geometry to be chosen. 

The problem defined in (32)-(35) is a particular case of (23)-(26): x = <, T = Fo, TRf(xt 5) = @,(<, Fob, w,(s) 
= w;[fzn, k,(x)= <rbazT x0 = 0, x1 = 1, A, = l/Bi,, B, = 1, <p(‘t) = ef(Fo), cpo = @o, C,,, = K,, Q(r) = 0. 

For this case the solution can be given through the functions 

Y-,,,(x)= f 
(- l)n.xZ” 

“=O (2n)!!(r,+2n-l)!! 

Y-Wz(s) = i: 
(- l)n..?“+i 

n=e (2it)!!(f,+211+1)!!~ 

(361 

1371 

The properties of Wr,,X(x) and V,,“(x) are described in detail in the monography [6] and partially in the 
Appendix of [14]. For I,,, = 0, 1 and 2 the series (36)-(37) define the following well-known functions 

W,(x) = cos x, w,(.u) = Jo, W,(x) = sin .x/y 

V,(x) = sin x, %(.x1 = J, (x1, ii(x) = (sinx-xcosx)/x2. (38) 
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The solution of (27) for k,,,(x) = <‘*t, and W,(X) = w~<‘~~~ , and having in mind the boundary condition (28). has 
the form 

i,,(g) = E”,Cti,, (t&P,,) (39) 

where E, are integration constants. 
Substituting this solution in the boundary condition (29) yields the following transcendental equation for the 

calculation of the eigenvalues p, (i = 1, 2. .): 

Substitution of (39) in (30) after some simple algebraic transformations leads to the following analytical 
solution: 

H,(<.Fo)= l+ f K 
( 

m=, ,oii(r.+l)j-l(O,,+~~~h..o,'!~.",,/,~~)dij 

+ i: A,iW,,,,(o,~icS)exP(-~LZFO) 

i=l 

where 

CONCLUSIONS 

The above solutions from the present paper permits one to solve easy any particular case of solid-liquid 

extraction problems. The general problem treated by the author in [7] becomes a special case of the problem 
studied here, namely: 4 = 1, w,(M) = 1, k,(M) = a, P,(M, t) = w(M, r)/(cy), A, = A/u, B = 1, p. = T,. Q(T) 

= 0, C, = cy/(cryr k’,). Similarly. from equation (41) one can easily obtain the one-dimensional solutions in the 
papers [l-lo]. 
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SOLUTION GENERALE DU MECANISME DE DIFFUSION 
EN EXTRACTION SOLIDE-LIQUIDE 

R&me-On donne une solution analytique pour les distributions de concentration en y particules 
differentes pour des geometries quelconques et des conditions initiale arbitraires, dans des volumes finis. La 
variation de concentration du liquide environnant est couplee a la separation de mat&e en provenance des 
particules poreuses par les conditions de bilan massique pour la phase liquide. La solution obtenue contient 
comme cas tres particuliers le probleme de I’extraction ptriodique a cojou/contrecourant de particules 
monodimensionnelles (plaque, cylindre et sphere) [ 1.2,8,9, lo], le probleme des distributions de temperature 
dans une particule solide chauffee par des gaz a co/ou;‘contrecourant [3,5] et le probltme du chauffage d’un 

corps dans un volume fini de liquide parfaitement melange [4, 71. 
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EINE ALLGEMEINE L&SUNG FUR DIFFUSIONSVORGANGE BEI 
DER FEST-FLUSSIG-EXTRAKTION 

Zusammenfassung-Filr die Konzentrationsverteihmgen in q verscbiedenen Partikeln willkiirlicher 
endlicher Geometrie und bei willkiirlichen Anfangsbedingungen wird eine analytische L&sung fur den 
Fall der Extraktion in endlichem Volumen abgeleitet. Die Konzentrationsver;inderung der umgebenden 
Fliissigkeit h;ingt mit der Stoffabtre~nung van den porijsen Partikeln bei den fiir die Fl~ssi~keitsphase 
giiltigen Stoffaustaus~h~dingungen zusammen. In der gefundenen Liisung sind die periodische 
Extraktion und die Extraktion bei Gleichund Gegenstrom von eindimensionalen Partikeln (Platte, 
Zylinder, Kugel) als Spezialfdle enthalten [l, 2, S-lo]. Zusatzlich kann die Temperaturverteilung in 
gasbeheizten ~eststoffpartikeln bei Gleich- und Gegenstrom [3, 51 und die Erwkmung eines 

Korpers in einer gutdurchmischten Flhssigkeit begrenzten Volumens [4, 71 ermittelt werden. 
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